Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell Rep ; 43(4): 114012, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573856

RESUMEN

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.


Asunto(s)
Eritrocitos , Plasmodium falciparum , Polisacáridos , Proteínas Protozoarias , Eritrocitos/parasitología , Eritrocitos/metabolismo , Humanos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Plasmodium falciparum/metabolismo , Polisacáridos/metabolismo , Malaria Falciparum/parasitología , Animales , Lectinas/metabolismo , Lectinas/genética , Antígenos de Protozoos/metabolismo , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/genética , Unión Proteica
2.
Malar J ; 21(1): 23, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073934

RESUMEN

BACKGROUND: Surveillance programmes often use malaria rapid diagnostic tests (RDTs) to determine the proportion of the population carrying parasites in their peripheral blood to assess the malaria transmission intensity. Despite an increasing number of reports on false-negative and false-positive RDT results, there is a lack of systematic quality control activities for RDTs deployed in malaria surveillance programmes. METHODS: The diagnostic performance of field-deployed RDTs used for malaria surveys was assessed by retrospective molecular analysis of the blood retained on the tests. RESULTS: Of the 2865 RDTs that were collected in 2018 on Bioko Island and analysed in this study, 4.7% had a false-negative result. These false-negative RDTs were associated with low parasite density infections. In 16.6% of analysed samples, masked pfhrp2 and pfhrp3 gene deletions were identified, in which at least one Plasmodium falciparum strain carried a gene deletion. Among all positive RDTs analysed, 28.4% were tested negative by qPCR and therefore considered to be false-positive. Analysing the questionnaire data collected from the participants, this high proportion of false-positive RDTs could be explained by P. falciparum histidine rich protein 2 (PfHRP2) antigen persistence after recent malaria treatment. CONCLUSION: Malaria surveillance depending solely on RDTs needs well-integrated quality control procedures to assess the extent and impact of reduced sensitivity and specificity of RDTs on malaria control programmes.


Asunto(s)
Antígenos de Protozoos/análisis , Coinfección/diagnóstico , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Malaria/diagnóstico , Vigilancia de la Población , Proteínas Protozoarias/análisis , Coinfección/epidemiología , Guinea Ecuatorial/epidemiología , Reacciones Falso Positivas , Incidencia , Malaria/epidemiología , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Ácidos Nucleicos/análisis , Plasmodium falciparum/aislamiento & purificación , Plasmodium malariae/aislamiento & purificación , Plasmodium ovale/aislamiento & purificación , Estudios Retrospectivos
3.
J Immunol ; 206(11): 2753-2762, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031146

RESUMEN

Mycolactone is a cytotoxin responsible for most of the chronic necrotizing pathology of Mycobacterium ulcerans disease (Buruli ulcer). The polyketide toxin consists of a 12-membered lactone ring with a lower O-linked polyunsaturated acyl side chain and an upper C-linked side chain. Mycolactone is unique to M. ulcerans and an immunological Ag capture assay would represent an important tool for the study of Buruli ulcer pathogenesis and for laboratory diagnosis. When testing sets of mycolactone-specific mouse mAbs, we found that Abs against the hydrophobic lower side chain only bind mycolactone immobilized on a solid support but not when present in solution. This observation supports previous findings that mycolactone forms micellar structures in aqueous solution with the hydrophobic region sequestered into the inner core of the aggregates. Although an Ag capture assay typically requires two Abs that recognize nonoverlapping epitopes, our search for matching pairs of mAbs showed that the same mAb could be used both as capture and as detecting reagent for the detection of the mycolactone aggregates. However, the combination of a core-specific and a core/upper side chain-specific mAb constituted the most sensitive ELISA with a sensitivity in the low nanogram range. The results of a pilot experiment showed that the sensitivity of the assay is sufficient to detect mycolactone in swab samples from Buruli ulcer lesions. Although the described capture ELISA can serve as a tool for research on the biology of mycolactone, the assay system will have to be adapted for use as a diagnostic tool.


Asunto(s)
Antígenos Bacterianos/análisis , Macrólidos/análisis , Mycobacterium ulcerans/química , Animales , Anticuerpos Monoclonales/inmunología , Antígenos Bacterianos/inmunología , Macrólidos/inmunología , Ratones , Estructura Molecular , Mycobacterium ulcerans/inmunología
4.
Virol J ; 18(1): 28, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33499880

RESUMEN

BACKGROUND: Diverse vaccination outcomes and protection levels among different populations pose a serious challenge to the development of an effective malaria vaccine. Co-infections are among many factors associated with immune dysfunction and sub-optimal vaccination outcomes. Chronic, asymptomatic viral infections can contribute to the modulation of vaccine efficacy through various mechanisms. Human Pegivirus-1 (HPgV-1) persists in immune cells thereby potentially modulating immune responses. We investigated whether Pegivirus infection influences vaccine-induced responses and protection in African volunteers undergoing whole P. falciparum sporozoites-based malaria vaccination and controlled human malaria infections (CHMI). METHODS: HPgV-1 prevalence was quantified by RT-qPCR in plasma samples of 96 individuals before, post vaccination with PfSPZ Vaccine and after CHMI in cohorts from Tanzania and Equatorial Guinea. The impact of HPgV-1 infection was evaluated on (1) systemic cytokine and chemokine levels measured by Luminex, (2) PfCSP-specific antibody titers quantified by ELISA, (3) asexual blood-stage parasitemia pre-patent periods and parasite multiplication rates, (4) HPgV-1 RNA levels upon asexual blood-stage parasitemia induced by CHMI. RESULTS: The prevalence of HPgV-1 was 29.2% (28/96) and sequence analysis of the 5' UTR and E2 regions revealed the predominance of genotypes 1, 2 and 5. HPgV-1 infection was associated with elevated systemic levels of IL-2 and IL-17A. Comparable vaccine-induced anti-PfCSP antibody titers, asexual blood-stage multiplication rates and pre-patent periods were observed in HPgV-1 positive and negative individuals. However, a tendency for higher protection levels was detected in the HPgV-1 positive group (62.5%) compared to the negative one (51.6%) following CHMI. HPgV-1 viremia levels were not significantly altered after CHMI. CONCLUSIONS: HPgV-1 infection did not alter PfSPZ Vaccine elicited levels of PfCSP-specific antibody responses and parasite multiplication rates. Ongoing HPgV-1 infection appears to improve to some degree protection against CHMI in PfSPZ-vaccinated individuals. This is likely through modulation of immune system activation and systemic cytokines as higher levels of IL-2 and IL17A were observed in HPgV-1 infected individuals. CHMI is safe and well tolerated in HPgV-1 infected individuals. Identification of cell types and mechanisms of both silent and productive infection in individuals will help to unravel the biology of this widely present but largely under-researched virus.


Asunto(s)
Coinfección/inmunología , Infecciones por Flaviviridae/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Esporozoítos/inmunología , Adolescente , Adulto , Estudios de Cohortes , Coinfección/complicaciones , Coinfección/parasitología , Coinfección/virología , Femenino , Infecciones por Flaviviridae/sangre , Infecciones por Flaviviridae/complicaciones , Infecciones por Flaviviridae/epidemiología , Guinea , Humanos , Vacunas contra la Malaria/administración & dosificación , Masculino , Persona de Mediana Edad , Pegivirus/genética , Pegivirus/inmunología , Plasmodium falciparum/inmunología , Ensayos Clínicos Controlados Aleatorios como Asunto , Tanzanía , Vacunación , Potencia de la Vacuna , Adulto Joven
5.
Infect Dis Poverty ; 9(1): 128, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887642

RESUMEN

BACKGROUND: Efforts to control and eliminate schistosomiasis have accelerated over the past decade. As parasite burden, associated morbidity and egg excretion decrease, diagnosis with standard parasitological methods becomes harder. We assessed the robustness and performance of a real-time PCR (qPCR) approach in comparison with urine filtration microscopy and reagent strip testing for the diagnosis of Schistosoma haematobium infections of different intensities. METHODS: The robustness of DNA isolation and qPCR was validated in eight laboratories from Europe and Africa. Subsequently, 792 urine samples collected during cross-sectional surveys of the Zanzibar Elimination of Schistosomiasis Transmission (ZEST) project in 2012-2017 were examined with qPCR in 2018. Diagnostic sensitivity of the qPCR was calculated at different infection intensity categories, using urine filtration microscopy as reference test. Spearman's rank correlation between Ct-values and S. haematobium egg counts was assessed and Ct-value percentiles for infection intensity categories determined. RESULTS: S. haematobium Dra1 DNA-positive samples were identified correctly in all eight laboratories. Examination of urine samples from Zanzibar revealed Dra1 DNA in 26.8% (212/792) by qPCR, S. haematobium eggs in 13.3% (105/792) by urine filtration, and microhaematuria in 13.8% (109/792) by reagent strips. Sensitivity of the qPCR increased with augmenting egg counts: 80.6% (29/36) for counts between 1 and 4 eggs, 83.3% (15/18) for counts between 5 and 9 eggs, 100% (23/23) for counts between 10 and 49 eggs, and 96.4% (27/28) for counts of 50+ eggs. There was a significant negative correlation between Ct-values and egg counts (Spearman's rho = - 0.49, P < 0.001). Seventy-five percent of the Ct-values were ≥ 33 in the egg-negative category, < 31 in the light intensity category, and < 24 in the heavy intensity category. CONCLUSIONS: While the sensitivity of the qPCR was ~ 80% for very light intensity infections (egg counts < 10), in general, the Dra1 based qPCR assay detected twice as many S. haematobium infections compared with classical parasitological tests. The qPCR is hence a sensitive, urine-based approach for S. haematobium diagnosis that can be used for impact assessment of schistosomiasis elimination programmes, individual diagnosis, and in improved format also for verification and certification of elimination. TRIAL REGISTRATION: ISRCTN, ISRCTN48837681 . Registered 05 September 2012 - Retrospectively registered.


Asunto(s)
ADN de Helmintos/orina , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Schistosoma haematobium/aislamiento & purificación , Esquistosomiasis Urinaria/diagnóstico , Animales , Estudios Transversales , Europa (Continente) , Femenino , Humanos , Masculino , Recuento de Huevos de Parásitos , Tiras Reactivas , Schistosoma haematobium/genética , Esquistosomiasis Urinaria/orina , Sensibilidad y Especificidad , Manejo de Especímenes , Tanzanía
6.
PLoS Negl Trop Dis ; 14(6): e0008357, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32589646

RESUMEN

Mycolactones, macrolide cytotoxins, are key virulence factors of Mycobacterium ulcerans, the etiological agent of the chronic necrotizing skin disease Buruli ulcer. There is urgent need for a simple point-of-care laboratory test for Buruli ulcer and mycolactone represents a promising target for the development of an immunological assay. However, for a long time, all efforts to generate mycolactone-specific antibodies have failed. By using a protein conjugate of a truncated non-toxic synthetic mycolactone derivative, we recently described generation of a set of mycolactone-specific monoclonal antibodies. Using the first mycolactone-specific monoclonal antibodies that we have described before, we were able to develop an antigen competition assay that detects mycolactones. By the systematic selection of a capturing antibody and a reporter molecule, and the optimization of assay conditions, we developed an ELISA that detects common natural variants of mycolactone with a limit of detection in the low nanomolar range. The mycolactone-specific ELISA described here will be a very useful tool for research on the biology of this macrolide toxin. After conversion into a simple point-of-care test format, the competition assay may have great potential as laboratory assay for both the diagnosis of Buruli ulcer and for the monitoring of treatment efficacy.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Macrólidos/inmunología , Macrólidos/aislamiento & purificación , Mycobacterium ulcerans/metabolismo , Animales , Anticuerpos Monoclonales , Úlcera de Buruli/diagnóstico , Úlcera de Buruli/microbiología , Modelos Animales de Enfermedad , Humanos , Macrólidos/química , Ratones , Ratones Endogámicos BALB C , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium ulcerans/aislamiento & purificación , Sensibilidad y Especificidad
7.
J Immunol ; 204(1): 180-191, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31801816

RESUMEN

Our understanding of the human immune response to malaria remains incomplete. Clinical trials using whole-sporozoite-based vaccination approaches such as the Sanaria PfSPZ Vaccine, followed by controlled human malaria infection (CHMI) to assess vaccine efficacy offer a unique opportunity to study the immune response during Plasmodium falciparum infection. Diverse populations of T cells that are not restricted to classical HLA (unconventional T cells) participate in the host response during Plasmodium infection. Although several populations of unconventional T cells exist, the majority of studies focused on TCR Vγ9Vδ2 cells, the most abundant TCR γδ cell population in peripheral blood. In this study, we dissected the response of three TCR γδ cell subsets and mucosal-associated invariant T cells in healthy volunteers immunized with PfSPZ Vaccine and challenged by CHMI using Sanaria PfSPZ Challenge. Using a flow cytometry-based unbiased analysis followed by T cell cloning, several findings were made. Whereas major ex vivo alterations were not detectable after immunization with PfSPZ Vaccine, TCR Vδ2, and mucosal-associated invariant T cells expanded after asexual blood-stage parasitemia induced by CHMI. CHMI, but not vaccination, also induced the activation of TCR Vδ1 and Vδ1-Vδ2- γδ T cells. The activated TCR Vδ1 cells were oligoclonal, suggesting clonal expansion, and upon repeated CHMI, showed diminished response, indicating long-term alterations induced by blood-stage parasitemia. Some TCR Vδ1 clones recognized target cells in the absence of parasite-derived Ags, thus suggesting recognition of self-molecules. These findings reveal the articulate participation of different populations of unconventional T cells to P. falciparum infection.


Asunto(s)
Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Subgrupos de Linfocitos T/inmunología , Adolescente , Adulto , Células Cultivadas , Voluntarios Sanos , Humanos , Masculino , Análisis de la Célula Individual , Tanzanía , Adulto Joven
8.
Org Lett ; 21(15): 5853-5857, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31295000

RESUMEN

Mycolactones A/B (1a/b) are exotoxins of Mycobacterium ulcerans that are the molecular cause of Buruli ulcer. 1a/b represent a rapidly equilibrating mixture of Z/E isomers about the C4'═C5' double bond of the C5-side chain. Here, we describe the syntheses of mycolactone analogs with configurationally stable C5-side chains (2a, E mimetic; 2b/c, Z mimetics). Based on the cytotoxicity of 2a-c, the Δ4',5'-trans isomer of mycolactones A/B (1b) appears to be the major virulence factor.


Asunto(s)
Exotoxinas/química , Macrólidos/química , Mycobacterium ulcerans/patogenicidad , Virulencia/fisiología , Úlcera de Buruli/microbiología
9.
Genome Biol Evol ; 10(8): 2102-2109, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30060167

RESUMEN

Neisseria meningitidis is the leading cause of epidemic meningitis in the "meningitis belt" of Africa, where clonal waves of colonization and disease are observed. Point mutations and horizontal gene exchange lead to constant diversification of meningococcal populations during clonal spread. Maintaining a high genomic diversity may be an evolutionary strategy of meningococci that increases chances of fixing occasionally new highly successful "fit genotypes". We have performed a longitudinal study of meningococcal carriage and disease in northern Ghana by analyzing cerebrospinal fluid samples from all suspected meningitis cases and monitoring carriage of meningococci by twice yearly colonization surveys. In the framework of this study, we observed complete replacement of an A: sequence types (ST)-2859 clone by a W: ST-2881 clone. However, after a gap of 1 year, A: ST-2859 meningococci re-emerged both as colonizer and meningitis causing agent. Our whole genome sequencing analyses compared the A population isolated prior to the W colonization and disease wave with the re-emerging A meningococci. This analysis revealed expansion of one clone differing in only one nonsynonymous SNP from several isolates already present in the original A: ST-2859 population. The colonization bottleneck caused by the competing W meningococci thus resulted in a profound reduction in genomic diversity of the A meningococcal population.


Asunto(s)
Neisseria meningitidis/genética , Variación Genética , Ghana , Humanos , Meningitis/líquido cefalorraquídeo , Meningitis/microbiología , Neisseria meningitidis/aislamiento & purificación , Filogenia , Recombinación Genética
10.
Microb Genom ; 3(8): e000120, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-29026659

RESUMEN

Countries of the African 'meningitis belt' are susceptible to meningococcal meningitis outbreaks. While in the past major epidemics have been primarily caused by serogroup A meningococci, W strains are currently responsible for most of the cases. After an epidemic in Mecca in 2000, W:ST-11 strains have caused many outbreaks worldwide. An unrelated W:ST-2881 clone was described for the first time in 2002, with the first meningitis cases caused by these bacteria reported in 2003. Here we describe results of a comparative whole-genome analysis of 74 W:ST-2881 strains isolated within the framework of two longitudinal colonization and disease studies conducted in Ghana and Burkina Faso. Genomic data indicate that the W:ST-2881 clone has emerged from Y:ST-175(CC175) bacteria by capsule switching. The circulating W:ST-2881 populations were composed of a variety of closely related but distinct genomic variants with no systematic differences between colonization and disease isolates. Two distinct and geographically clustered phylogenetic clonal variants were identified in Burkina Faso and a third in Ghana. On the basis of the presence or absence of 17 recombination fragments, the Ghanaian variant could be differentiated into five clusters. All 25 Ghanaian disease isolates clustered together with 23 out of 40 Ghanaian isolates associated with carriage within one cluster, indicating that W:ST-2881 clusters differ in virulence. More than half of the genes affected by horizontal gene transfer encoded proteins of the 'cell envelope' and the 'transport/binding protein' categories, which indicates that exchange of non-capsular antigens plays an important role in immune evasion.


Asunto(s)
Meningitis Meningocócica/microbiología , Neisseria meningitidis/genética , Burkina Faso/epidemiología , Brotes de Enfermedades , Transferencia de Gen Horizontal , Ghana/epidemiología , Humanos , Meningitis Meningocócica/epidemiología , Neisseria meningitidis/patogenicidad , Virulencia
11.
ACS Chem Biol ; 12(5): 1297-1307, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28294596

RESUMEN

Mycolactone, the macrolide exotoxin produced by Mycobacterium ulcerans, is central to the pathogenesis of the chronic necrotizing skin disease Buruli ulcer (BU). Here we show that mycolactone acts as an inhibitor of the mechanistic Target of Rapamycin (mTOR) signaling pathway by interfering with the assembly of the two distinct mTOR protein complexes mTORC1 and mTORC2, which regulate different cellular processes. Inhibition of the assembly of the rictor containing mTORC2 complex by mycolactone prevents phosphorylation of the serine/threonine protein kinase Akt. The associated inactivation of Akt leads to the dephosphorylation and activation of the Akt-targeted transcription factor FoxO3. Subsequent up-regulation of the FoxO3 target gene BCL2L11 (Bim) increases expression of the pro-apoptotic regulator Bim, driving mycolactone treated mammalian cells into apoptosis. The central role of Bim-dependent apoptosis in BU pathogenesis deduced from our experiments with cultured mammalian cells was further verified in an experimental M. ulcerans infection model. As predicted by the model, M. ulcerans infected Bim knockout mice did not develop necrotic BU lesions with large clusters of extracellular bacteria, but were able to contain the mycobacterial multiplication. Our findings provide a new coherent and comprehensive concept of BU pathogenesis.


Asunto(s)
Apoptosis , Proteína 11 Similar a Bcl2/fisiología , Úlcera de Buruli/patología , Macrólidos/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Úlcera de Buruli/microbiología , Células Cultivadas , Técnicas de Inactivación de Genes , Macrólidos/toxicidad , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Complejos Multiproteicos/efectos de los fármacos , Mycobacterium ulcerans/química , Mycobacterium ulcerans/patogenicidad , Serina-Treonina Quinasas TOR/efectos de los fármacos
12.
PLoS Negl Trop Dis ; 10(6): e0004808, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27351976

RESUMEN

BACKGROUND: Mycolactone, the macrolide exotoxin produced by Mycobacterium ulcerans, causes extensive tissue destruction by inducing apoptosis of host cells. In this study, we aimed at the production of antibodies that could neutralize the cytotoxic activities of mycolactone. METHODOLOGY/PRINCIPAL FINDINGS: Using the B cell hybridoma technology, we generated a series of monoclonal antibodies with specificity for mycolactone from spleen cells of mice immunized with the protein conjugate of a truncated synthetic mycolactone derivative. L929 fibroblasts were used as a model system to investigate whether these antibodies can inhibit the biological effects of mycolactone. By measuring the metabolic activity of the fibroblasts, we found that anti-mycolactone mAbs can completely neutralize the cytotoxic activity of mycolactone. CONCLUSIONS/SIGNIFICANCE: The toxin neutralizing capacity of anti-mycolactone mAbs supports the concept of evaluating the macrolide toxin as vaccine target.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Exotoxinas/inmunología , Macrólidos/inmunología , Mycobacterium ulcerans/metabolismo , Factores de Virulencia/inmunología , Animales , Exotoxinas/metabolismo , Macrólidos/química , Macrólidos/metabolismo , Ratones , Estructura Molecular , Factores de Virulencia/metabolismo
13.
PLoS Negl Trop Dis ; 9(2): e0003477, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25668636

RESUMEN

Buruli ulcer (BU) caused by Mycobacterium ulcerans is a devastating skin disease, occurring mainly in remote West African communities with poor access to health care. Early case detection and subsequent antibiotic treatment are essential to counteract the progression of the characteristic chronic ulcerative lesions. Since the accuracy of clinical BU diagnosis is limited, laboratory reconfirmation is crucial. However, currently available diagnostic techniques with sufficient sensitivity and specificity require infrastructure and resources only accessible at a few reference centres in the African endemic countries. Hence, the development of a simple, rapid, sensitive and specific point-of-care diagnostic tool is one of the major research priorities for BU. In this study, we have identified a previously unknown M. ulcerans protein, MUL_3720, as a promising target for antigen capture-based detection assays. We show that MUL_3720 is highly expressed by M. ulcerans and has no orthologs in other prevalent pathogenic mycobacteria. We generated a panel of anti-MUL_3720 antibodies and used them to confirm a cell wall location for MUL_3720. These antibodies could also specifically detect M. ulcerans in infected human tissue samples as well as in lysates of infected mouse footpads. A bacterial 2-hybrid screen suggested a potential role for MUL_3720 in cell wall biosynthesis pathways. Finally, we demonstrate that a combination of MUL_3720 specific antibody reagents in a sandwich-ELISA format has sufficient sensitivity to make them suitable for the development of antigen capture-based diagnostic tests for BU.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Úlcera de Buruli/diagnóstico , Mycobacterium ulcerans/inmunología , África , Animales , Proteínas Bacterianas/metabolismo , Úlcera de Buruli/epidemiología , Pared Celular/metabolismo , Pruebas Diagnósticas de Rutina/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Sistemas de Atención de Punto , Prevalencia , Sensibilidad y Especificidad
14.
mBio ; 5(5): e01974-14, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25336458

RESUMEN

In the African "meningitis belt," outbreaks of meningococcal meningitis occur in cycles, representing a model for the role of host-pathogen interactions in epidemic processes. The periodicity of the epidemics is not well understood, nor is it currently possible to predict them. In our longitudinal colonization and disease surveys, we have observed waves of clonal replacement with the same serogroup, suggesting that immunity to noncapsular antigens plays a significant role in natural herd immunity. Here, through comparative genomic analysis of 100 meningococcal isolates, we provide a high-resolution view of the evolutionary changes that occurred during clonal replacement of a hypervirulent meningococcal clone (ST-7) by a descendant clone (ST-2859). We show that the majority of genetic changes are due to homologous recombination of laterally acquired DNA, with more than 20% of these events involving acquisition of DNA from other species. Signals of adaptation to evade herd immunity were indicated by genomic hot spots of recombination. Most striking is the high frequency of changes involving the pgl locus, which determines the glycosylation patterns of major protein antigens. High-frequency changes were also observed for genes involved in the regulation of pilus expression and the synthesis of Maf3 adhesins, highlighting the importance of these surface features in host-pathogen interaction and immune evasion. Importance: While established meningococcal capsule polysaccharide vaccines are protective through the induction of anticapsular antibodies, findings of our longitudinal studies in the African meningitis belt have indicated that immunity to noncapsular antigens plays a significant role in natural herd immunity. Our results show that meningococci evade herd immunity through the rapid homologous replacement of just a few key genomic loci that affect noncapsular cell surface components. Identification of recombination hot spots thus represents an eminent approach to gain insight into targets of protective natural immune responses. Moreover, our results highlight the role of the dynamics of the protein glycosylation repertoire in immune evasion by Neisseria meningitidis. These results have major implications for the design of next-generation protein-based subunit vaccines.


Asunto(s)
Brotes de Enfermedades , Genoma Bacteriano , Evasión Inmune , Meningitis Meningocócica/epidemiología , Neisseria meningitidis Serogrupo A/clasificación , Neisseria meningitidis Serogrupo A/genética , África/epidemiología , Antígenos Bacterianos/genética , Transferencia de Gen Horizontal , Genotipo , Recombinación Homóloga , Humanos , Neisseria meningitidis Serogrupo A/inmunología , Neisseria meningitidis Serogrupo A/aislamiento & purificación , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia
15.
Mediators Inflamm ; 2013: 312476, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23864766

RESUMEN

BACKGROUND: The brain's inflammatory response to the infecting pathogen determines the outcome of bacterial meningitis (BM), for example, the associated mortality and the extent of brain injury. The inflammatory cascade is initiated by the presence of bacteria in the cerebrospinal fluid (CSF) activating resident immune cells and leading to the influx of blood derived leukocytes. To elucidate the pathomechanisms behind the observed difference in outcome between different pathogens, we compared the inflammatory profile in the CSF of patients with BM caused by Streptococcus pneumonia (n = 14), Neisseria meningitidis (n = 22), and Haemophilus influenza (n = 9). METHODS: CSF inflammatory parameters, including cytokines and chemokines, MMP-9, and nitric oxide synthase activity, were assessed in a cohort of patients with BM from Burkina Faso. RESULTS: Pneumococcal meningitis was associated with significantly higher CSF concentrations of IFN-γ , MCP-1, and the matrix-metalloproteinase (MMP-) 9. In patients with a fatal outcome, levels of TNF-α, IL-1 ß, IL-1RA, IL-6, and TGF-α were significantly higher. CONCLUSION: The signature of pro- and anti-inflammatory mediators and the intensity of inflammatory processes in CSF are determined by the bacterial pathogen causing bacterial meningitis with pneumococcal meningitis being associated with a higher case fatality rate than meningitis caused by N. meningitidis or H. influenzae.


Asunto(s)
Líquido Cefalorraquídeo/microbiología , Inflamación/líquido cefalorraquídeo , Meningitis Bacterianas/microbiología , Adolescente , Adulto , Quimiocinas/metabolismo , Niño , Preescolar , Citocinas/metabolismo , Femenino , Humanos , Lactante , Leucocitos/citología , Masculino , Meningitis Bacterianas/líquido cefalorraquídeo , Meningitis Bacterianas/diagnóstico , Meningitis por Haemophilus/líquido cefalorraquídeo , Meningitis por Haemophilus/diagnóstico , Meningitis Meningocócica/líquido cefalorraquídeo , Meningitis Meningocócica/diagnóstico , Meningitis Neumocócica/líquido cefalorraquídeo , Meningitis Neumocócica/diagnóstico , Meningitis Neumocócica/microbiología , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
16.
PLoS Negl Trop Dis ; 7(3): e2143, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23556027

RESUMEN

BACKGROUND: Mycolactones are a family of polyketide-derived macrolide exotoxins produced by Mycobacterium ulcerans, the causative agent of the chronic necrotizing skin disease Buruli ulcer. The toxin is synthesized by polyketide synthases encoded by the virulence plasmid pMUM. The apoptotic, necrotic and immunosuppressive properties of mycolactones play a central role in the pathogenesis of M. ulcerans. METHODOLOGY/PRINCIPAL FINDINGS: We have synthesized and tested a series of mycolactone derivatives to conduct structure-activity relationship studies. Flow cytometry, fluorescence microscopy and Alamar Blue-based metabolic assays were used to assess activities of mycolactones on the murine L929 fibroblast cell line. Modifications of the C-linked upper side chain (comprising C12-C20) caused less pronounced changes in cytotoxicity than modifications in the lower C5-O-linked polyunsaturated acyl side chain. A derivative with a truncated lower side chain was unique in having strong inhibitory effects on fibroblast metabolism and cell proliferation at non-cytotoxic concentrations. We also tested whether mycolactones have antimicrobial activity and found no activity against representatives of Gram-positive (Streptococcus pneumoniae) or Gram-negative bacteria (Neisseria meningitis and Escherichia coli), the fungus Saccharomyces cerevisae or the amoeba Dictyostelium discoideum. CONCLUSION: Highly defined synthetic compounds allowed to unambiguously compare biological activities of mycolactones expressed by different M. ulcerans lineages and may help identifying target structures and triggering pathways.


Asunto(s)
Exotoxinas/química , Exotoxinas/toxicidad , Macrólidos/química , Macrólidos/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Ratones , Mycobacterium ulcerans/metabolismo , Relación Estructura-Actividad
17.
Chemistry ; 17(46): 13017-31, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21971832

RESUMEN

The total synthesis of the mycobacterial toxins mycolactones A/B (1 a/b) has been accomplished based on a strategy built around the construction of the mycolactone core through ring-closing metathesis. By employing the Grubbs second-generation catalyst, the 12-membered core macrocycle of mycolactones, with a functionalized C2 handle attached to C11, was obtained in 60-80 % yield. The C-linked upper side chain (comprising C12-C20) was completed by a highly efficient modified Suzuki coupling between C13 and C14, while the attachment of the C5-O-linked polyunsaturated acyl side chain was achieved by Yamaguchi esterification. Surprisingly, a diene containing a simple isopropyl group attached to C11 could not be induced to undergo ring-closing metathesis. By employing fluorescence microscopy and flow cytometry techniques, the synthetic mycolactones A/B (1 a/b) were demonstrated to display similar apoptosis-inducing and cytopathic effects as mycolactones A/B extracted from Mycobacterium ulcerans. In contrast, a simplified analogue with truncated upper and lower side chains was found to be inactive.


Asunto(s)
Toxinas Bacterianas/síntesis química , Animales , Apoptosis , Toxinas Bacterianas/química , Catálisis , Macrólidos , Ratones , Estructura Molecular , Mycobacterium ulcerans/química
18.
J Exp Med ; 205(12): 2735-43, 2008 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19015305

RESUMEN

T cell survival and homeostatic proliferation in the periphery requires T cell receptor (TCR) binding to restricting major histocompatability complex (MHC)-encoded molecules, as well as the availability of certain lymphokines. However, the exact mechanisms by which these signals interrelate and contribute to homeostasis are not understood. By performing T cell transfers into TCR transgenic hosts we detected a hierarchical order of homeostatic proliferation for T cells differing in MHC restriction, such that OT1 cells (K(b) restricted) proliferated in P14 (D(b)-restricted TCR) recipients, but not vice versa. Using K(b) mutant mice, we demonstrated that proliferation of OT1 cells in P14 recipients, as well as the ability of host OT1 cells to hinder the proliferation of donor P14 cells, were dependent on OT1-TCR binding to K(b) molecules. However, interclonal T cell competition was not mediated simply by competition for physical access to the MHC-bearing cell. This was shown in parabiotic pairs of OT1 and K(b) mutant mice in which P14 cells failed to proliferate, even though the OT1 cells could not interact with half of the APCs in the system. Thus, we conclude that the interaction between the TCR and restricting MHC molecule influences the ability to compete for trophic resources not bound to the stimulating APC. This mechanism allows a local competitiveness that extends beyond a T cell's specificity.


Asunto(s)
Proliferación Celular , Complejo Mayor de Histocompatibilidad , Receptores de Antígenos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Traslado Adoptivo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Homeostasis , Ratones , Ratones Noqueados , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal/fisiología
19.
PLoS Negl Trop Dis ; 2(3): e199, 2008 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-18350112

RESUMEN

Vaccination with plasmid DNA encoding Ag85A from M. bovis BCG can partially protect C57BL/6 mice against a subsequent footpad challenge with M. ulcerans. Unfortunately, this cross-reactive protection is insufficient to completely control the infection. Although genes encoding Ag85A from M. bovis BCG (identical to genes from M. tuberculosis) and from M. ulcerans are highly conserved, minor sequence differences exist, and use of the specific gene of M. ulcerans could possibly result in a more potent vaccine. Here we report on a comparison of immunogenicity and protective efficacy in C57BL/6 mice of Ag85A from M. tuberculosis and M. ulcerans, administered as a plasmid DNA vaccine, as a recombinant protein vaccine in adjuvant or as a combined DNA prime-protein boost vaccine. All three vaccination formulations induced cross-reactive humoral and cell-mediated immune responses, although species-specific Th1 type T cell epitopes could be identified in both the NH2-terminal region and the COOH-terminal region of the antigens. This partial species-specificity was reflected in a higher--albeit not sustained--protective efficacy of the M. ulcerans than of the M. tuberculosis vaccine, particularly when administered using the DNA prime-protein boost protocol.


Asunto(s)
Aciltransferasas/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Mycobacterium ulcerans/inmunología , Proteínas Recombinantes/inmunología , Vacunas de ADN/inmunología , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Femenino , Pie/microbiología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunoglobulina G/inmunología , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mycobacterium ulcerans/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacunas de ADN/genética , Vacunas de ADN/metabolismo
20.
Vaccine ; 25 Suppl 1: A18-23, 2007 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-17531357

RESUMEN

Although Neisseria meningitidis is a highly variable organism, most invasive disease is caused by a minority of genotypes. Hypervirulent lineages have been identified and their pandemic spread has been traced. During a longitudinal meningococcal colonization study in a district of northern Ghana clonal waves of carriage and disease were observed. Genetic diversification of genoclouds was analysed by pulsed field gel electrophoretic (PFGE) analysis of isolates from healthy carriers and from meningitis patients. Even during the limited time of persistence in the district, microevolution of the dominating genoclouds took place. Population genomic analyses are required to understand the genetic basis for the emergence of new lineages with epidemic potential, which is of crucial importance for the development of long-term global vaccination strategies against meningococcal disease.


Asunto(s)
Variación Genética , Meningitis Meningocócica/epidemiología , Neisseria meningitidis/genética , ADN Bacteriano/análisis , ADN Bacteriano/genética , Electroforesis en Gel de Campo Pulsado , Geografía , Ghana/epidemiología , Humanos , Meningitis Meningocócica/inmunología , Neisseria meningitidis/clasificación , Neisseria meningitidis/patogenicidad , Neisseria meningitidis Serogrupo A/clasificación , Neisseria meningitidis Serogrupo A/genética , Neisseria meningitidis Serogrupo A/patogenicidad , Neisseria meningitidis Serogrupo W-135/clasificación , Neisseria meningitidis Serogrupo W-135/genética , Neisseria meningitidis Serogrupo W-135/patogenicidad , Serotipificación , Factores de Tiempo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...